Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; 10(5): e0103422, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2001787

ABSTRACT

AZD7442, a combination of two long-acting monoclonal antibodies (tixagevimab [AZD8895] and cilgavimab [AZD1061]), has been authorized for the prevention and treatment of coronavirus disease 2019 (COVID-19). The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants requires methods capable of quickly characterizing resistance to AZD7442. To support AZD7442 resistance monitoring, a biolayer interferometry (BLI) assay was developed to screen the binding of tixagevimab and cilgavimab to SARS-CoV-2 spike proteins to reduce the number of viral variants for neutralization susceptibility verification. Six spike variants were chosen to assess the assay's performance: four with decreased affinity for tixagevimab (F486S:D614G and F486W:D614G proteins) or cilgavimab (S494L:D614G and K444R:D614G proteins) and two reference proteins (wild-type HexaPro and D614G protein). Equilibrium dissociation constant (KD) values from each spike protein were used to determine shifts in binding affinity. The assay's precision, range, linearity, and limits of quantitation were established. Qualification acceptance criteria determined whether the assay was fit for purpose. By bypassing protein purification, the BLI assay provided increased screening throughput. Although limited correlation between pseudotype neutralization and BLI data (50% inhibitory concentration versus KD) was observed for full immunoglobulins (IgGs), the correlations for antibody fragments (Fabs) were stronger and reflected a better comparison of antibody binding kinetics with neutralization potency. Therefore, despite strong assay performance characteristics, the use of full IgGs limited the screening utility of the assay; however, the Fab approach warrants further exploration as a rapid, high-throughput variant-screening method for future resistance-monitoring programs. IMPORTANCE SARS-CoV-2 variants harbor multiple substitutions in their spike trimers, potentially leading to breakthrough infections and clinical resistance to immune therapies. For this reason, a BLI assay was developed and qualified to evaluate the reliability of screening SARS-CoV-2 spike trimer variants against anti-SARS-CoV-2 monoclonal antibodies (MAbs) tixagevimab and cilgavimab, the components of AZD7442, prior to in vitro pseudovirus neutralization susceptibility verification testing. The assay bypasses protein purification with rapid assessment of the binding affinity of each MAb for each recombinant protein, potentially providing an efficient preliminary selection step, thus allowing a reduced testing burden in the more technically complex viral neutralization assays. Despite precise and specific measures, an avidity effect associated with MAb binding to the trimer confounded correlation with neutralization potency, negating the assay's utility as a surrogate for neutralizing antibody potency. Improved correlation with Fabs suggests that assay optimization could overcome any avidity limitation, warranting further exploration to support future resistance-monitoring programs.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , Reproducibility of Results , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Interferometry , Immunoglobulin Fragments , Recombinant Proteins
2.
Sci Transl Med ; 14(635): eabl8124, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736022

ABSTRACT

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Drug Combinations , Half-Life , Humans , Immunization, Passive , Primates , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
3.
Cell Rep ; 37(12): 110143, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1561098

ABSTRACT

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

4.
Nat Microbiol ; 6(10): 1233-1244, 2021 10.
Article in English | MEDLINE | ID: covidwho-1434113

ABSTRACT

Understanding the molecular basis for immune recognition of SARS-CoV-2 spike glycoprotein antigenic sites will inform the development of improved therapeutics. We determined the structures of two human monoclonal antibodies-AZD8895 and AZD1061-which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor-binding domain (RBD) of SARS-CoV-2 to define the genetic and structural basis of neutralization. AZD8895 forms an 'aromatic cage' at the heavy/light chain interface using germ line-encoded residues in complementarity-determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals. AZD1061 has an unusually long LCDR1; the HCDR3 makes interactions with the opposite face of the RBD from that of AZD8895. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the crucial binding residues of both antibodies and identified positions of concern with regards to virus escape from antibody-mediated neutralization. Both AZD8895 and AZD1061 have strong neutralizing activity against SARS-CoV-2 and variants of concern with antigenic substitutions in the RBD. We conclude that germ line-encoded antibody features enable recognition of the SARS-CoV-2 spike RBD and demonstrate the utility of the cocktail AZD7442 in neutralizing emerging variant viruses.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigenic Variation , Binding Sites , COVID-19/immunology , COVID-19/virology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Mutation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL